
J Anesth (2001) 15:149–153

Effects of ketamine on voltage-dependent calcium currents and
membrane potentials in single bullfrog atrial cells
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nervous system [2,3] and a blocking action on the
reuptake of catecholamines at adrenergic nerve endings
in a cocaine-like manner [4]. These effects are quite
different from those of other intravenous and inhala-
tional anesthetics.

However, once the balance of the sympathetic ner-
vous system fails, in patients with critical cardiovascular
conditions, ketamine occasionally causes an unexpected
fall in blood pressure [5]. Ketamine has been reported
to have a negative inotropic effect in vitro and several
papers demonstrated myocardial depression induced by
ketamine [6–8]. L-Type calcium channel current (ICa)
was inhibited by ketamine in single smooth muscles
of rabbit portal vein [9]. Thus, the inhibition of ICa is
supposed to play a major role in the negative inotropic
effect of ketamine on the heart. In addition, a recent
paper reported that high concentrations of ketamine
had a negative inotropic effect that was accompanied by
a decreased intracellular Ca2� transient in human myo-
cardium [10]. However, the mechanisms of the inhibi-
tion of ICa, including use-dependent block, have not yet
been fully clarified. The purpose of this study was to
investigate the mechanisms of the effect of ketamine on
bullfrog single atrial myocytes by monitoring ICa, resting
membrane potential, and action potential.

Materials and methods

Solution

All solutions were made with 18MΩ purity water and
were kept saturated with 95% oxygen / 5% carbon
dioxide. Standard Ringer’s solution contained (in mM)
NaCl 90.6, NaHCO3 20.0, KCl 2.5, MgCl2 5.0, CaCl2 2.5,
and glucose 10. Low-calcium Ringer’s solution was
identical to standard Ringer’s solution, except that
CaCl2 was reduced to 10 µM. In all the solutions, pH
was between 7.2 and 7.4 and was adjusted to 7.4 before
use. Ketamine hydrochloride (Sankyo Pharmaceutical,
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Introduction

Ketamine is an intravenous and intramuscular anes-
thetic that is widely used in both humans and animals.
The characteristic point of ketamine is that it produces
dose-dependent increases in blood pressure and heart
rate [1]. These stimulatory effects on the cardiovascular
system are supposed to be due to the sympathomimetic
actions of ketamine, primarily excitation of the central
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Tokyo, Japan) was applied by dissolving into the
Ringer’s solution.

Cell isolation

The technique for isolation of atrial myocytes from bull-
frog heart is a modification of the method previously
described by Hume and Giles [11], and it is reported
that this preparation is suitable for voltage-clamp
studies. Adult bullfrogs (Rana catesbeiana) were killed
by decapitation under ether anesthesia, and the heart
was excised and transferred to a dissecting dish filled
with standard Ringer’s solution. After the right atrium
was cut out, it was placed in a second dish containing
low-calcium Ringer’s solution. Then it was transferred
with forceps into a 5-ml solution of low-calcium Ringer’s
solution containing 0.15% collagenase (Yakult, Tokyo,
Japan) and 0.1% trypsin (Sigma, St. Louis, MO, USA).
The right atrium was stirred slowly (60 rpm) with a
magnetic stirrer for 45 min. Then the enzyme medium
was pipetted off and reincubated with 5ml of low-
calcium Ringer’s solution containing 0.1% bovine serum
albumin (Sigma) for 5 min, and the medium was pipetted
off again and reincubated with 5ml of low-calcium
Ringer’s solution containing 0.05% collagenase for ap-
proximately 30min. After these treatments, the incuba-
tion medium became quite opaque, and single atrial
myocytes were observed under the microscope.

Recording method

The ionic currents and the membrane potentials were
recorded with low-resistance glass microelectrodes (1–
2µm, 3–5 MΩ pipette resistance) filled with 150mM
KCl. Glass microelectrodes were fabricated with a two-
stage vertical microelectrode puller (PP-83, Narishige,
Tokyo, Japan) from glass microtubes (G-1.5,
Narishige). The whole-cell voltage-clamp method was
used to examine the ionic currents, and the whole-cell
current-clamp method was applied to monitor the mem-
brane potentials. A patch-clamp amplifier (Axopatch
1D, Axon, Union City, CA, USA) was used to monitor
the ionic current and membrane potentials. Data
were stored in an IBM-compatible computer via the
analogue-digital converter (Digidata 1200, Axon).
Acquisition and analysis of the data were performed by

pClamp software (Axon). L-Type calcium currents (ICa)
were evoked by applying depolarizing pulses from a
holding potential of �40 mV. ICa was identified after
the current was blocked in the presence of nifedipine
(10�6 M). Action potentials were elicited by current in-
jection (100 mV, 2ms). Resting membrane potential,
overshoot, duration of action potential, and duration at
20% (APD20) and 90% (APD90) of repolarization were
examined. It was supposed that APD20 reflected the
plateau phase of the action potential, which was carried
by calcium influx, and APD90 reflected the repolariza-
tion phase, which was carried by potassium outward
current. All of the experiments were performed at room
temperature (22–23°C).

Statistical analysis

Data were expressed as means � SD. Statistical analy-
ses were performed first by one-way analysis of variance
(ANOVA) and, if indicated, the multiple comparison
test (Dunnett) was employed to test for significant dif-
ferences between the groups. A probability value of
P � 0.05 was considered significant.

Results

Effects of ketamine on ICa

Ketamine reduced ICa within the range between 10�6

and 10�3 M (Table 1). In addition, the inhibition of ICa

was dose-dependent between 10�5 and 10�3 M ketamine.
ICa was completely blocked in the presence of 10�3 M
ketamine (Fig. 1A), which was restored to almost 70%
of the control after washing out of ketamine. Peak ICa

was observed between 0 and �0mV (Fig. 1B), and the
50% inhibitory concentration of peak ICa (IC50) induced
by ketamine was estimated as 0.92 � 10�5 M from these
results. In the presence of 10�4 M ketamine, the reversal
potential of ICa was shifted negatively by about 10mV.

To further examine the mode of blockade of L-type
calcium channels induced by ketamine, we examined
whether ketamine showed use-dependent block of ICa.
Cells were held at �40 mV, and text depolarization
pulses (100ms) to 0 mV were applied every 10s. After
the control currents were recorded, the test pulses were
stopped and ketamine (10�4 M) was applied for 10 min.
Then the test pulses were resumed and the amplitude of

Table 1. Inhibition of ICa by ketamine (mean � SD; n � 5 for each value)

Concentration (M) 10�6 10�5 10�4 10�3

ICa (% of control) 58.3 � 12.6a 51.7 � 8.2a 37.9 � 6.3a,b 1.1 � 2.3a,c

a P � 0.05 vs control
b,c P � 0.05 vs 10�5, 10�4, respectively
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Fig. 1. Effects of ketamine on ICa. A Typical traces of ICa and
inhibition of ICa in the presence of ketamine (a control, b
10�4 M, c 10�3 M). ICa was elicited by a test pulse (200 ms) to
0 mV from a holding potential of �40mV. Arrow shows the
zero current level. B Current-voltage relationship of ICa. ICa

was elicited by a test pulse from a holding potential of �40mV
by �10mV increments to �50mV (n � 5). *P � 0.05 vs
control

Fig. 2. Lack of use-dependent block of ICa in the presence of
ketamine. A Cells were held at �40mV, and test depolariza-
tion pulses to 0 mV were applied every 10 s for 100ms. After
the control currents were recorded, the test pulses were
stopped and ketamine (10�4 M) was applied for 10min. On
resumption of the test pulse, ICa showed direct inhibition with-
out use-dependent block. B Actual trace of ICa (a control, b
the first trace in the presence of ketamine 10�4 M). Arrow
shows zero current level. Note that ICa was inhibited from the
first trace in the presence of ketamine

ICa was recorded. Ketamine (10�4 M) did not show use-
dependent block of ICa in five cells (Fig. 2A and B).

Effects of ketamine on membrane potentials

Ketamine did not change the resting membrane poten-
tial or shorten the duration of the action potential at
10�5 M. However, 10�4 M ketamine depolarized the rest-
ing membrane potential and prolonged the duration of
the action potential (Table 2). In addition, a marked
reduction of the plateau phase and prolongation of re-
polarization of the action potential in the presence of
ketamine (10�4 M) were observed (Fig. 3). These results
were based on the shortening of APD20 and prolonga-
tion of APD90 (Table 2). In the presence of a higher
concentration of ketamine (10�3 M), the membrane po-
tential was depolarized.

Discussion

Ketamine is known to have unique cardiovascular ef-
fects. It stimulates the cardiovascular system and in-
creases blood pressure, heart rate, and cardiac output.
However, ketamine has negative inotropic effects in
isolated hearts [6,7]. Our results showed inhibition of ICa

induced by ketamine between 10�6 and 10�3 M in bull-
frog single atrial myocytes. Inhibition of ICa in the pres-
ence of ketamine has a role in the negative inotropic
effect on the myocardium in the guinea pig [12,13] an
rat [13]. It is noteworthy that ketamine (10�4 M) does
not show use-dependent block of ICa. The presence of
use-dependent block of ICa was reported for thiopental
[14], diltiazem [15], and propofol [16], and it is sug-
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gested that a possible mechanism of negative inotropic
action induced by these agents is their action as open
channel blockers that inhibit L-type Ca2� channels in
the open state. In contrast, inhaled anesthetics such as
sevoflurane did not demonstrate use-dependent block
on ICa [17]. Our results indicated that ketamine inhibits
L-type Ca2� channel in its closed state as does
sevoflurane. Furthermore, a role for the participation of
the sarcoplasmic reticulum [18] in the production of
ketamine-induced negative inotropic effect on the heart
should be examined.

Ketamine (10�5 M) did not affect the resting mem-
brane potential, but a higher dose (10�4 M) of ketamine
depolarized it. The resting membrane potential is
mostly maintained and controlled by potassium ions,
especially regulated by inwardly rectifying potassium
channel current (IKir). This result suggests that ketamine
can affect IKir at higher doses.

Ketamine (10�5 M) did not show any effect on action
potential, but a higher dose (10�4 M) of ketamine re-
duced overshoot, prolonged total duration and APD90,
and shortened APD20. Shortening of APD20 reflected
the inhibition of the plateau phase of the action poten-
tial. Because the plateau phase was supposed to be car-

ried by L-type calcium channel current, shortening of
APD20 induced by a high dose of ketamine would agree
with our result that ketamine inhibited ICa. APD90

reflected the total duration of the action potential. This
method of measurement is useful in that artifact and
noises at resting level could be disregarded. A high dose
of ketamine (10�4 M) prolonged APD90, but on the
other hand, APD20 was shortened. Prolongation of
action potentials was reported with thiopental [14]
and halothane [19], but not with propofol [16] and
sevoflurane [20]. The mechanism of prolongation of
the action potential could be due to an inhibition of
the repolarizing phase of the action potential, which
was carried by delayed rectified potassium current.
Ketamine did not alter the conductance of the inward
rectifying potassium current [21] in rat ventricular
myocytes at 10µM, nor did it prolong APD90 in guinea
pig heart [22] at 50 µM. These reports indicate that
ketamine does not prolong the duration of the action
potential in clinically relevant concentrations, a result
that is compatible with our results. However, some
other pump system or ionic exchange mechanism is re-
sponsible for the repolarization, and further investiga-
tion is required.

The therapeutic range of ketamine plasma concentra-
tions in humans is from 2.9 to 9.2 � 10�6 M [23]. Within
this range, our results demonstrated some inhibition of
ICa, but negligible changes in membrane potential and
action potential. Because some of the ketamine com-
bines with serum protein when it is administered in vivo,
the concentration of active ketamine might be lower
than when it is administered in vitro. Thus, ketamine is
a quite safe general anesthetic for clinical use. However,
ketamine reduced ICa at higher doses and prolonged the
duration of the action potential. In addition, ketamine
usually stimulates the cardiovascular system, but it was
reported that a second dose of ketamine produced
hemodynamic effects less than or even opposite to those
of the first dose [24]. Thus, we must pay attention to
avoid overdose and repeated doses of ketamine, even
for clinical use.

In conclusion, ketamine (10�5–10�3 M) inhibited ICa

and did not show use-dependent block of ICa. A high

Fig. 3. Effect of ketamine on action potentials. Typical traces
of action potentials are shown (a control, b 10�5 M ketamine, c
10�4 M ketamine). Action potential was elicited by current
injection (0.1Hz, 2 ms, 120mV) in whole-cell current-clamp
mode

Table 2. Effect of ketamine on membrane potentials

Potential Control Ketamine 10�5 M Ketamine 10�4 M

RMP (mV) �88.75 � 3.2 �91.5 � 4.3 �85.5 � 2.3a

Overshoot (mV) 41 � 2.5 39 � 2.7 34 � 2.0a

Duration (ms) 687 � 30 657 � 28 1075 � 63a

APD20 (ms) 221 � 10 210 � 12 163 � 25a

APD90 (ms) 598 � 32 605 � 25 1035 � 120a

RMP, Resting membrane potential; APD, duration of action potential; APD20, APD90, APD at
20% and 90% of repolarization, respectively
a P � 0.05 vs control, n � 5
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dose (10�4 M) of ketamine depolarized the resting
membrane potential, reduced the overshoot and pla-
teau phase of the action potential, and prolonged the
total duration.
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